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ABSTRACT
Developers of distributed systems routinely construct
discrete-event simulations to help understand and evaluate
the behavior of inter-component protocols. Simulations are
abstract models of systems and their environments, captur-
ing basic algorithmic functionality at the same time as they
focus attention on properties critical to distribution, includ-
ing topology, timing, bandwidth, and overall scalability. We
claim that simulations can be treated as a form of specifica-
tion, and thereby used within a specification-based testing
regime to provide developers with a rich new basis for defin-
ing and applying system-level test adequacy criteria. We
describe a framework for evaluating distributed system test
adequacy criteria, and demonstrate our approach on sim-
ulations and implementations of three distributed systems,
including DNS, the Domain Name System.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Distributed systems, discrete-event simulation, test ade-
quacy criteria, fault-based analysis

1. INTRODUCTION
The use of discrete-event simulations in the design and

development of distributed systems is widespread. For ex-
ample, they are used to understand network protocols [1],
engineer distributed systems [31], and improve distributed
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algorithms [7]. They are appealing to developers because
of their inherent efficiency and scalability. Unlike many
other development artifacts, simulations seem to be used,
and therefore well maintained, throughout the development
process, both as early design tools and as late evaluation
tools.

Given the effort invested in the construction and main-
tenance of simulations, and the degree to which developers
trust in them, we wonder whether there are other purposes
to which they can be put. In particular, we ask whether
they can increase the rigor with which distributed systems
are tested, and make the following hypothesis: Simulations
can be used within a specification-based testing regime to help
developers of distributed systems define and apply effective
system-level test suites. The intuition leading to this hy-
pothesis is based on several observations.

• Simulations are used to understand and evaluate
the functionality and performance of complex inter-
component protocols and algorithms. They abstract
away low-level details of the implementation of a dis-
tributed system, as well as details of the operational
environment, yet still provide a faithful model of the
expected behavior of the system in its environment.

• Simulations embody abstractions for the underlying
mechanisms and environmental conditions that affect
the distribution properties of systems. In addition to
operating on the normal functional inputs of a system,
simulations are parameterized by a set of inputs for
controlling a wide range of environmental phenomena,
such as message sequences, delays, and bandwidths.

• Recent frameworks for discrete-event simulation en-
courage simulations to be written in one or another
common imperative programming language, such as
C++ or Java.1 Therefore, the simulation code itself
is amenable to common program analysis techniques
and tools.

In summary, a simulation is an abstract, executable specifi-
cation of a distributed system, where the specification lan-
guage happens to be a programming language.

Test suites are typically constructed with respect to ad-
equacy criteria. Adequacy criteria are used as a means of
organizing the testing activity, serving both as stopping con-
ditions on testing and as measures of progress toward that
1There are many such simulation frameworks. Ex-
amples can be found at http://www.j-sim.org/ and
http://www.ssfnet.org/.



goal. To date, adequacy criteria have been studied in the
context of sequential (e.g., Frankl and Weyuker [13]) and
concurrent (e.g., Carver and Tai [5]) systems, but not in the
context of distributed systems.

In this paper we demonstrate the power of a simulation-
based approach to distributed-system test adequacy criteria
by showing how to: (1) define adequacy criteria with respect
to a simulation and (2) evaluate the criteria, again with
respect to a simulation, to determine their effectiveness at
causing fault-revealing failures in an implementation.

Notice that this conforms to the general idea of
specification-based testing, where a fundamental premise is
that a specification-adequate test suite can lead to effective
testing of the implementation. For example, consider the
use of finite state machine (FSM) specifications in protocol
testing [3], where adequacy is established by measuring the
extent to which a test suite exercises the structural or be-
havioral elements of the FSM specification. A state-coverage
adequacy criterion may require that all states be visited at
least once. Another criterion might require that the test
suite produce all possible outputs by visiting all arcs in the
FSM. Once the adequacy of a given test suite is established
against the specification, it is simply applied to the imple-
mentation to perform the actual tests.

In our case, the structural and behavioral elements of the
specification are embodied in the program code of the simu-
lation. Therefore, as a logical first step, we are led to exam-
ine familiar and simple adequacy criteria based on white-box
code-coverage metrics, such as block coverage. (Notice the
analogy to FSM-based coverage.) However, we do not imply
nor require that these specification-code-coverage adequacy
criteria correlate with similar implementation-code-coverage
criteria. So, for example, a test suite that has an adequate
coverage of the blocks in a simulation-based specification
may or may not have adequate coverage of the blocks in the
implementation. Any relationship is irrelevant, since the
program code of each differs substantially from the other.
Instead, we are interested in the relationship of simulation-
code coverage to measures of effectiveness in causing fault-
revealing implementation failures. We argue that a test suite
with a higher level of simulation-code coverage, under a valid
adequacy criterion, will have a greater effectiveness at caus-
ing such failures in the implementation.

Notice, too, that we do not assume the simulation to be
correct. As in other specification-based testing or analy-
sis approaches, the specification is correct only by defi-
nition and, therefore, test failures merely establish non-
conformance of the implementation and specification.

The primary conceptual contribution of this paper is the
notion that simulations can be used to define and evaluate
adequacy criteria for system-level testing of distributed sys-
tems. We give baseline experimental evidence that valid ad-
equacy criteria do indeed exist. Yet it is highly probable that
criteria will differ in their effectiveness for different systems.
This should be especially true of distributed systems, whose
differences are only exaggerated by the complicating factors
of topology, timing, and the like. Therefore, we also ad-
dress the practical question of how to use simulation-based
criteria in the most cost-effective way for each particular
system. The result is a second contribution of this paper,
in which we demonstrate a method for evaluating the rela-
tive effectiveness of competing criteria. The method is once
again based on the simulation code. In particular, we per-

form a fault-based analysis of the simulation code to rank
the relative effectiveness of multiple test suites. Then, by
systematically analyzing the test suites that are adequate
with respect to some criteria, we derive the ranking of the
relative effectiveness of the criteria themselves.

We validated our hypotheses and substantiated our claims
through a series of experiments on three distributed systems.
Two of the systems involve a set of faulty student implemen-
tations of the well-known distributed algorithms “go-back-
n” and “link-state routing”. The third is MaraDNS, which
is an open-source implementation of a recursive, caching Do-
main Name System (DNS) resolver. We experimented with
34 releases of MaraDNS, which consists of between 15,000
and 24,000 lines of code, depending on the version.

In our studies we used the comprehensive experimentation
and analysis method introduced by Frankl and Weiss [12].
Their method involves sampling a large universe of test cases
to randomly construct test suites that are adequate with
respect to different criteria. Statistical inference is then used
to test hypotheses about the relative fault-detecting ability
of competing suites and criteria. To evaluate the different
criteria, we employ a technique described by Briand et al. [4],
in which different testing strategies are simulated, once the
failure data for each test case has been collected.

The results of the experiments clearly show that even un-
der the most simplistic usage scenario our approach per-
forms significantly better than a random selection process
for test suites. Moreover, we are able to show that we can
successfully establish an effectiveness ranking among ade-
quate test suites, as well as among the adequacy criteria
themselves. This presents the developer with a powerful
new tool for organizing the testing activity and for tailoring
it to the distributed system at hand.

In the next section we present the details of our approach
to establishing simulation-based test adequacy criteria. In
discussing this, we take the perspective of the developer of
a distributed system and consider several ways that they
might approach the problem of testing their implementa-
tion. Section 3 reviews the experimental setup and subjects.
The details of the experiments, their results, and threats to
validity are presented in Section 4. Section 5 reviews related
work. Section 6 concludes with a brief look at future work.

2. SIMULATIONS AND TESTING
As noted above, discrete-event simulations are commonly

used during the design and development of distributed sys-
tems. Traditionally, simulations are used to help understand
the behavior and performance of complex systems. Here we
are interested in using them to help guide testing.

Discrete-event simulations are organized around the ab-
stractions of process and event. Briefly, processes represent
the dynamic entities in the system being simulated, while
events are used by processes to exchange information. When
simulating distributed systems, processes are used to repre-
sent the core components of the system, as well as environ-
mental entities such as the underlying network or external
systems. Events represent messages exchanged by the com-
ponents and can be thought of as generic structured data
types. Virtual time is advanced explicitly by processes to
represent “processing time” and advanced implicitly when
events are scheduled to occur in the future. To run a simu-
lation, processes are instantiated, initialized, and connected
into a particular configuration that is then executed.



Consider a simple client/server system designed to oper-
ate over a network with unreliable communication. A sim-
ulation of this system might consist of three process types,
Client, Server, and Network, and two event types, Request
and Response. The Network process is used as an interme-
diary through which events between clients and servers are
scheduled. Network latency is represented in the simula-
tion by having the Network process control the scheduling
of event deliveries. The unreliable nature of the network is
represented by having the Network process randomly drop
events by not scheduling them at all. A given configuration
might include four process instances: s:Server, c1:Client,
c2:Client, and n:Network, communicating using an arbi-
trary number of Request and Response events.

Clearly, the simulation code of this example system can
be used to experiment with network latencies and drop rates
under different configurations, as a means to predict overall
performance, and to evaluate scalability and other proper-
ties. But, how can the simulation code be used for testing?

2.1 Basic Concepts
We refer to a simple and generic testing process. As a

first step, the developer assembles a test suite. As usual, a
test suite is composed of test cases, each one consisting of
an input vector that includes direct inputs to the system,
representing functional parameters, as well as inputs to the
environment, representing environmental conditions. Then,
the developer determines whether the suite is adequate, and
if it is, uses it to test the implementation.

The simulation code plays the role of the specification in
specification-based testing. Therefore, simulation is used to
decide the adequacy of the test suite. The process by which
individual test cases are created or generated is outside the
scope of this paper. Similarly, we do not propose nor discuss
any specific strategy by which the developer might search
the space of test suites to find an adequate one; our concern
is with the decision process, not the search process.

At a high level our approach rests on two ideas. The
first idea is to use the simulation code and simulation execu-
tions as a basis to formulate general-purpose and/or system-
specific test adequacy criteria. For example, a general-
purpose criterion might call for statement coverage of the
simulation code of all non-environmental processes (Client
and Server in the example above), or a system-specific crite-
rion might require that each event type be dropped at least
once during a simulation run. Once a criterion is defined,
the developer can evaluate the adequacy of a test suite by
running the test cases in a suitably instrumented simulation.

This use of simulation, as with all adequacy-based testing
techniques, requires the developer to choose a particular cri-
terion, and to select test cases that comprise only a single ad-
equate test suite. Making each of these decisions exposes the
developer to risk. First, there is little empirical or analyti-
cal data that the developer can use for guidance in selecting
an adequacy criterion that is likely to be effective for their
particular system. Therefore, they run the risk of selecting
a criterion that happens to be less effective than another
candidate criterion; we refer to this as inter-criterion risk.
Second, there is often significant variability in effectiveness
of test suites adequate with respect to a particular criterion,
exposing the developer to the risk of selecting an ineffective,
adequate test suite; we refer to this as intra-criterion risk.

Therefore, the second idea is to provide the developer with

a general ranking mechanism to: (1) guide the selection
of the most effective criterion for the system at hand and
(2) fine tune the selection of the most effective suite within
the set of adequate suites, given a chosen criterion. This
ranking mechanism is also based on the simulation code,
and in particular it is derived from a fault-based analysis of
the simulation code.

2.2 Fault-Based Analysis
In fault-based analysis, testing strategies such as adequacy

criteria are compared by their ability to detect fault classes.
Fault classes are typically manifested as mutation operators
that alter a correct specification in well-defined ways to pro-
duce a set of incorrect versions of the specification. These
mutants can be used to compare testing strategies.

For example, an implementation might have a fault that
causes a particular state change to be missed, where such
state changes are represented as transitions in a finite-state
specification. This missing transition fault class is then rep-
resented in the specification domain by all specifications that
can be obtained from the original specification by removing
one of the transitions. Testing strategies that are able to
distinguish incorrect from correct specifications are said to
cover that particular fault class. The underlying assumption
of this kind of fault-based analysis, known as the coupling
effect [8], is that simple syntactic faults in a specification are
representative of a wide range of implementation faults that
might arise in practice, so a testing strategy that covers a
particular fault class is expected to do well at finding this
class of faults in an implementation.

A prerequisite of a fault-based analysis is the existence of
a set of mutation operators that can be applied to the spec-
ification. Simulations are typically coded in imperative pro-
gramming languages and so well suited to the code-mutation
operators developed in the context of mutation testing [8].
These operators make simple syntactic changes to code that
may result in semantic differences.

In our fault-based analysis, we apply standard code-
mutation operators to the simulation code, thereby obtain-
ing a set of specifications. Each individual test case is then
applied to each mutant in turn. That is, for each test case,
we run a simulation using each mutated version of the simu-
lation code. A simulation may (1) terminate normally with
reasonable results, (2) terminate normally with unreason-
able results, (3) not terminate, or (4) terminate abnormally.
For all but the first situation, the test case is recorded as
having killed the mutant. The mutant score of a test suite
is computed as the percentage of mutants killed by at least
one test case in the suite.

In most mutation analyses, the exact output from the orig-
inal version is used as an oracle against which mutant output
is compared. This is not always possible with simulation-
based testing because simulations of distributed systems are
naturally non-deterministic. In practice, we use assertions
and sanity checks in the simulation code to determine which
results are considered “reasonable”.

2.3 Usage Scenarios
We propose to use fault-based analysis of the simulation

code and simulation-based adequacy criteria, individually
or in combination, to support the identification of effective
test suites. We describe this approach through three usage
scenarios.



Conventional. The conventional way to use simulation-
based testing is to choose a general-purpose adequacy crite-
rion defined against the simulation code, and select a single
test suite that is adequate with respect to it. In this sce-
nario, the developer is exposed to both types of risk, inter-
criterion and intra-criterion, discussed above. The cost in
this scenario is simply the cost of simulating test cases until
an adequacy value is achieved.
Boosting. In this scenario, the developer has somehow cho-
sen a particular adequacy criterion, as before, but here they
want to reduce the risk of picking an ineffective, adequate
test suite. Thus, they select multiple adequate test suites,
use fault-based analysis to rank the suites by mutant score,
and apply the highest-ranked suite to the implementation.
This usage is more costly than the conventional usage, since
multiple adequate suites must be selected, and each selected
test suite must undergo a fault-based analysis. On the other
hand, intra-criterion risk is reduced.
Ranking. In this scenario, the developer is looking to ra-
tionally decide between multiple criteria. So, the developer
creates many adequate test suites for each candidate crite-
rion, and uses fault-based analysis to determine which cri-
terion is likely to be the most effective, thereby reducing
inter-criterion risk. At this point, the developer simply uses
boosting on the adequate test suites already created for the
highest-ranking criterion.

In summary, simulation can be used directly to evaluate
the adequacy of a test suite with respect to criteria based on
the environment and on the simulation code. This requires
running the test suite through an instrumented simulation.
In addition, the simulation can be used to improve the ef-
fectiveness of any criterion and to inform the developer in
selecting a criterion. This is done by means of a fault-based
analysis of the simulation code. In Section 4 we experimen-
tally evaluate the benefits of these techniques.

In terms of cost, the test selection process we propose
is advantageous because it only requires the execution of
simulations, and therefore avoids the cost of setting up the
system under test over complex distributed testbeds [33].
Specifically, deciding whether a test suite is adequate with
respect to a given criterion requires only one execution of the
simulation for each test case. Fault-based analysis is more
expensive, as it requires multiple simulation executions (one
for each mutant) for each test case in a test suite.

3. SUBJECT SYSTEMS
Our study uses simulations and implementations of three

subject distributed systems. For each system, we created
simulations from informal specification documents describ-
ing their intended inputs and behaviors, and experimented
with available implementations. The first system, GBN, is
the “go-back-n” algorithm, which is used for reliably trans-
ferring data over an unreliable communications layer. The
second, LSR, is a link-state routing scheme that uses Dijk-
stra’s algorithm in each component of a decentralized collec-
tion of routers to compute local message-forwarding behav-
ior. The third, and most significant, is a recursive, caching
Domain Name System (DNS) resolver.

Implementation of the first two systems were given as
programming assignments in an introductory undergradu-
ate networking course taught at the University of Lugano.
We used the assignment handout provided to students and
the Kurose and Ross networking textbook [17] as source de-

scriptions. For the DNS resolver we used historical releases
of MaraDNS,2 an open-source resolver that implements the
core DNS functionality as described by RFCs 1034 and 1035.

To simulate each system, we used the simjava discrete-
event simulation engine.3 In the course of this work we
developed a thin layer over the discrete-event core that pro-
vides a more natural way to schedule and receive events.
This layer also includes a process implementing the behav-
ior of a probabilistically unreliable network.

3.1 GBN
As described by Kurose and Ross, GBN involves two

processes: a sender that outputs data packets and waits for
acknowledgments, and a receiver that waits for data packets
and replies with acknowledgments. Both processes maintain
sequence-number state to ensure data packets are received
in the proper order. The sender also maintains a sliding win-
dow of sent packets from which data can be retransmitted
if acknowledgments are not received within a certain time
period. As an additional wrinkle, the student assignment
required the sending window size to grow and shrink as dic-
tated by the history of acknowledgment packets received.

GBN is implemented within a simple client/server file
transfer application. The client program is invoked with the
path to an existing file to be read and transferred, and the
server program is provided the path to a file to be created
and populated with the received data.

Specification
The GBN simulation code consists of two event classes, ACK
and DAT, which represent acknowledgments and data pack-
ets, respectively. The Sender process represents the client
program and implements the functionality of a GBN sender.
Similarly, Receiver implements the server side of the algo-
rithm. All together, the specification consists of approxi-
mately 125 non-comment, non-blank lines of Java.

We defined a single GBN simulation consisting of one
server and one receiver. This simulation is parameterized
by the following three values:

1. NumBytes: the number of bytes to be transferred,
sampled uniformly in [1, 335760].

2. DropProb: the probability of a packet being dropped
by the network, distributed uniformly in [0.0, 0.20].

3. DupProb: the probability of a non-dropped packet
being duplicated, distributed uniformly in [0.0, 0.20].

NumBytes is passed directly to Sender and also used in an
assertion within Receiver to check that the proper number
of bytes is actually received. DropProb and DupProb are
used by the unreliable network process to randomly drop
and duplicate events. The network process delays all events
by the same amount.

For GBN, the universe of test cases consists of 2500 ran-
domly created parameter tuples.

Implementations
Student implementations of GBN were coded in an average
of 129 lines of C using a framework, itself approximately
300 lines of C code, provided by the course instructor. This

2http://maradns.org
3http://www.dcs.ed.ac.uk/home/hase/simjava/



framework handles application-level file I/O and the low-
level socket API calls. The students were responsible for
implementing the core go-back-n algorithm within the con-
straints imposed by these layers.

We also used our own Java-based implementation of this
system, and created faulty versions using the MuJava au-
tomatic mutation tool [18]. This implementation uses the
basic sockets facilities provided by the java.net package
and consists of 24 classes containing 565 lines of code.

The test harness randomly populates a temporary file
with NumBytes bytes and starts an instance of a simple
UDP proxy that mediates packet exchange and drops, and
duplicates packets in the same way the network process does
in the simulation. The test fails if either program exits with
an error, or if the file was not duplicated faithfully.

3.2 LSR
A link-state routing scheme is one in which each router

uses complete global knowledge about the network to com-
pute its forwarding tables. The LSR system described in
the student programming assignment utilizes Dijkstra’s al-
gorithm to compute the least-cost paths between all nodes in
the network. This information is then distilled to construct
the forwarding tables at each node. To reduce complex-
ity, the assignment statement stipulates that the underlying
network does not delay or drop messages.

Specification
The LSR simulation code consists of three events, several
supporting data structures, a class implementing Dijkstra’s
algorithm, a Router process type, and a Client process type
to inject messages, for a total of approximately 180 lines
of Java code. A router takes as input a list of its direct
neighbors and the costs of the links to each of them.

4-Line 4-Cycle 4-Star 4-Mesh

Duo 3-Line 3-Cycle

Figure 1: LSR Topologies

We defined a simulation of LSR, parameterized by the
following values:

1. Topology: an integer in the range [1, 7], representing
a particular arrangement of routers and costs (Figure 1
shows each possibility graphically).

2. Message count: an integer in the range [0, 2n], rep-
resenting the number of messages to be sent, where n
is the number of routers in the topology.

3. Message source and destination: for each mes-
sage, the source router and destination router is se-
lected randomly from the range [1, n] with local mes-
sages allowed.

Hard coded into the simulation are the details of each topol-
ogy, including statically computed shortest-path costs for all
router pairs. In the simulation, n routers are instantiated
and arranged according to the specified topology. Then, mc
client instances (where mc is equal to the message count)
are created and scheduled for execution at regular intervals
with the specified source and destination router. Each client
publishes a short text string. As each publication is prop-
agated by a router, a path-cost variable is updated with
the costs of the links traversed. When a router receives a
publication to be delivered locally, it saves the string and
its total path cost. When the simulation terminates, asser-
tions ensure that each router received the expected number
of publications, and that the path cost for each is correct.

The universe of test cases for LSR consists of 7000 pa-
rameter tuples, 1000 for each topology, with the message
count, sources, and destinations selected randomly.

Implementations
Students were again provided with an application framework
within which they implemented the algorithm. On average,
students implemented the LSR logic within 120 lines of Java
and the framework itself is about 500 lines of code.

In the course assignment, this framework merely simu-
lated the network interaction. For our experiments, we
reimplemented the framework to run over the (unreliable)
network. This change required some of the supporting
classes written by students to be altered to implement the
java.io.Serializable interface. But the interface defines
no methods, so no algorithmic changes were made to any of
the student implementations.

The test harness duplicates the functionality of the simu-
lation setup code faithfully. A test fails if any of the router
or client programs terminates with an error code, or if a
router does not receive the expected messages.

3.3 DNS
The Domain Name System is one of the fundamental un-

derpinnings of the Internet, providing a distributed data-
base that maps names to resources of different types; the
most common mapping is used to translate names into
network addresses, but there are many others. The core
algorithms and resource types are defined in RFCs 1034
and 1035. These documents differentiate among several
conceptual components of DNS, including servers, stub re-
solvers, and recursive resolvers. Briefly, a server has primary
responsibility for a particular subset of the name space. It is
capable of responding directly to queries about names in this
space, and providing delegation information for other names.
A stub resolver is a program that delegates the resolution of
user queries to other resolvers. A recursive resolver is a more
sophisticated program that is able to perform the multiple
queries needed to successfully resolve names to resources.
Typically this involves following a trail of delegations from
the top-level “root” domain servers (servers responsible for
.com and .net, for example) to the “authoritative” servers
actually responsible for the name in question.

Of these three components, the recursive resolver is the
most complex, involving message exchanges with multiple
different servers, caching responses, processing name aliases,
and the like. For this reason, we focus on testing the behav-
ior of a recursive resolver.



Specification
The simulation code for DNS consists of 10 structures rep-
resenting the basic DNS resource record types, a single mes-
sage type that represents both requests and responses (as
in DNS), 11 low-level procedures for manipulating and com-
paring names and resource records, and three classes repre-
senting stub resolvers, recursive resolvers, and servers, for a
total of approximately 900 lines of Java code.

Inputs to the simulation consist of the following:

1. Name space: a generated name space populated ran-
domly with resources, divided into between 2 and 5
administrative domains randomly assigned to author-
itative servers.

2. Queries: name and type queries to be issued by stub
resolvers randomly selected to include unknown names
and invalid resource types.

3. DropProb: the probability of a packet being dropped
by the network, distributed uniformly in [0.0, 0.20].

4. DupProb: the probability of a non-dropped packet
being duplicated, distributed uniformly in [0.0, 0.20].

During simulation, authoritative servers are provided with
relevant portions of the name space; some of these servers
are root servers that can act as a starting point for the re-
cursive resolvers. The network error probabilities only affect
packets traveling between recursive resolvers and servers.

Assertions within the simulation ensure that the response
to each query is correct given the generated name space and
records. The universe for DNS consists of 2000 test cases.

Implementations
For implementations of the recursive resolver experimental
subjects, we used 34 public releases of MaraDNS, starting
with version 1.0.0.0 and ending with 1.2.07.1. MaraDNS
is implemented in C. Again, the source code for the en-
tire MaraDNS package ranges from roughly 15KLOC to
24KLOC, depending on the release.

During test executions we used version 2.0.1 of dnsjava4

as a stub resolver implementation, and the tinydns server
included with version 1.0.5 of djbdns5 as a server implemen-
tation; in this paper we assume they are correct.

For each simulation run, a control file is generated that
contains the definition of the name space, server configura-
tions, recursive resolver configuration, and the number and
behavior of stub resolvers. This file is also read by the test
harness that sets up the system using a localhost network,
and executes the tests.

4. EXPERIMENTS
We now present the experiments that validate our ap-

proach. We first describe the white-box specification-code-
coverage criteria and metrics, and then describe a prepara-
tion step in which we gather raw data.

The white-box criteria used in our experiments are
the well-known all-blocks, all-branches, and all-uses cover-
ages [13] applied to simulation code. Specifically, we apply
these criteria in aggregate to the entire simulation code base,

4http://www.dnsjava.org/
5http://cr.yp.to/djbdns.html

excluding classes that are part of the discrete-event simula-
tion core and our API layer. We create adequate suites for
these criteria by randomly selecting test cases from the uni-
verse and including them if they improve the coverage value.

We compare adequacy criteria based on their effective-
ness, E. This is measured as the average proportion of faults
found by adequate test suites. Others define and measure ef-
fectiveness on a per-implementation basis as the proportion
of adequate test suites that fail. Our metric is more appro-
priate for specification-based testing, since it accounts for
the breadth of a suite’s effectiveness. In other words, since
adequacy is measured with respect to coverage of the speci-
fication, an adequate test suite should perform well against
any implementation of the specification. Therefore, we con-
sider a suite that finds three faulty implementations to be
three times as effective as a suite that finds just one.

To determine statistically significant effectiveness rela-
tionships, we apply hypothesis testing to each pair of criteria
and compute the p-value. The p-value can be interpreted as
the smallest α-value at which the null hypothesis would be
rejected, where α is the probability of rejecting the null hy-
pothesis when it in fact holds. For example, to determine if
criterion A is more effective than criterion B, we propose a
null hypothesis H0 and an alternative hypothesis Ha:

H0 : A ≤ B

Ha : A > B

where > means “more effective than”. Although we do not
know the actual distribution of effectiveness values, we take
advantage of the central limit theorem and assume that the
distribution of the normalized form of our test statistic E ap-
proximates a normal distribution. We can use this theorem
comfortably with sample sizes larger than 30 [9]. Therefore,
we compute the z value for this hypothesis and use the p-
value formula for high-tailed hypothesis tests (i.e., when the
rejection region consists of high z values):

z =
ĒA − ĒB

σEA/
√

n

p = 1− Φ(z)

where ĒA and ĒB are the average effectiveness values for
criteria A and B respectively, σEA is the sample standard
deviation of effectiveness values of A, n is the sample size,
and Φ is the standard normal cumulative distribution func-
tion. Typically, with p-values less than 0.05 or 0.01 one
rejects H0 and concludes that A > B.

As preparation for our experiments, we simulate each test
case using the correct simulation code and all of its mutants.
We also execute each test case against each implementation
under test (IUT). As described in Section 3, the universes
for GBN, LSR and DNS contain 2500, 7000, and 2000 test
cases, respectively.

We generate mutants of the simulation code by using all
conventional mutation operators provided by the MuJava
tool [18]. This resulted in 488 mutants for GBN, 59 for
LSR, and 230 for DNS. We attribute the comparatively large
number of GBN mutants to the amount of integer arithmetic
used in this algorithm.

We simulate test cases against all mutants of the simula-
tion code. This step is quite expensive, and we mitigate this
by aggressively excluding mutants with high failure rates.



We identify these “pathological” mutants by initially sim-
ulating a small sample of test cases against all mutants.
Following this, mutants with failure rates higher than 50%
are excluded from further consideration. Eliminating these
mutants is justified because we measure the effectiveness of
test suites, not test cases, and mutants with high failure
rates are killed by virtually all test suites with more than
a few members. The same approach is used by others in
empirical studies [11] to focus attention on faults that are
hard to detect. After this initial sampling, we also examined
the code of mutants with zero kills and eliminated any ones
semantically equivalent to the original code.

We also simulate each test case against the “golden” (i.e.,
non-mutated) specification and collect coverage data.

Finally, we execute each test case against all IUTs. For
GBN, we started with 19 student implementations and 192
non-equivalent mutants of a Java implementation.6 For LSR
we had 16 student implementations, and for DNS we used
the 34 public releases.

GBN
IUT %

stud07 0.28
stud06 0.32
stud08 0.40
stud15 3.16
stud09 3.40
stud18 4.72
mutROR15 16.96
mutLOI35 17.00

LSR
IUT %

stud16 5.15
stud03 5.21
stud08 7.70
stud01 7.94
stud06 8.02
stud14 8.48
stud15 12.17
stud09 12.42

DNS
IUT %

1.0.29 9.15
1.1.59 15.25
1.1.91 17.30
1.2.03.3 17.45
1.1.60 17.55
1.2.01 18.00
1.2.03.5 18.20
1.2.07.1 18.40
1.2.00 18.45
1.1.61 18.70
1.2.03.4 18.90

Table 1: Implementation Failure Rates

After executing an initial sampling of test cases for each
IUT, we eliminated those having failure rates higher than
20%. After executing all test cases, we also excluded correct
implementations (i.e., those without failures), leaving the
set of subjects shown in Table 1.

4.1 Test Suite Adequacy and Effectiveness
The first experiment we describe is aimed at verifying our

most basic claim that test suites adequate with respect to
white-box simulation-code-coverage criteria are effective at
testing implementations.

Experiment 1
In this experiment we create many adequate suites for each
criterion out of the universe of test cases, and determine
effectiveness against the IUTs in Table 1. After doing this
for the white-box techniques, we generate random test suites
from the universe at the sizes corresponding to the size of
the white-box suites.

Figure 2 shows plots of suite size versus effectiveness for
the random and white-box criteria. In this figure, the DNS

6On principle we avoid using mutants as IUTs, since we use
the same operators to mutate simulation code. We gener-
ated mutants of our GBN implementation only after deter-
mining that there were not enough student implementations
with appropriate failure rates.
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Figure 2: Results for Experiment 1

plots are on the upper right-hand side, GBN is on the lower
left, and LSR is in the middle left. Notice that in each
case the white-box line is above the random line, graphically
demonstrating our claim. Hypothesis testing rigorously cor-
roborates this result by showing that the improvement in ef-
fectiveness of white-box techniques compared to same-sized
random suites is statistically significant.

The effectiveness relationships between white-box criteria
uncovered during this experiment are interesting. Based on
the classic literature, the expected relationship is all-uses >
all-branches > all-blocks. However, this is only supported
experimentally for GBN. For LSR, all-branches > all-uses,
while for DNS all-branches is more effective than both all-
branches and all-blocks, which have have statistically equiv-
alent effectiveness. We do not believe that these inconsistent
relationships are due to a failing in simulation-based testing,
but rather are fundamental to the use of adequacy criteria.
Experimental results reported by others support this obser-
vation: all-uses is shown to be better than all-branches on
average, but not universally [12].

4.2 Improving and Ranking Criteria
The next two experiments are aimed at validating our

claims about the fault-based analysis techniques. For these
experiments, we devised two black-box test criteria for each
system. The intent with these criteria is that they are plau-
sible alternatives to white-box techniques that a developer
might consider using. Details of these black-box criteria (re-
ferred to below as IP-1, IP-2, Quartet, Pair-50, Resources,
and TypicalUsage) are provided elsewhere [29]. Here it suf-
fices to say that they derive their test suites from analyses
of the functional and distribution input spaces, rather than
the code of the simulations. Nevertheless, the presence of
the simulation code is critical to the technique, as we explain
below.

Experiment 2
One of the claims we make in Section 2 is that by using a
fault-based analysis of simulation code in the boosting usage,
we can reduce the risk of selecting an ineffective, adequate
test suite. If test suites with higher effectiveness are prefer-
entially selected, then the net effect should be that test suites
selected using this method should be statistically more ef-
fective than the baseline population of adequate test suites.
To justify this claim, we perform the following experiment
for each criterion:



1. Choose M suites at random from the set of suites ad-
equate for the criterion in question.

2. Select the suite with highest mutant score, and deter-
mine its effectiveness.

We performed this process 100 times each with values of M
ranging from 2 to 8 and determined the smallest M value at
which the fault-based technique is statistically better than
the baseline effectiveness of the criterion (with α = 0.05).

Table 2 shows the results of these experiments. These
tables show, for each criterion, the minimum M value, the
baseline effectiveness, labeled E, and the boosted effective-
ness, labeled E+. For virtually all of the criteria applied
to GBN and LSR, the minimum multiplier M is 3 or less,
meaning that the developer sees significant improvement of
effectiveness with only 1 or 2 additional adequate suites.
We did find, however, that for all-uses with GBN there was
no improvement, even after analyzing seven additional ade-
quate suites.

For DNS, shown in Table 2(c), aside from all-uses, the
other criteria require more candidate test suites to boost.
Both Resources and TypicalUsage require three additional
candidate test suites before significant improvement is re-
alized, all-blocks requires seven additional test suites, and
all-branches could not be boosted, even when considering
eight suites.

While the boosting usage, particularly for DNS, can re-
quire significant effort to gain effectiveness, it appears to
come with no downside in terms of effectiveness. We evalu-
ated this by considering the opposite hypotheses, which test
whether the effectiveness drops when increasing the num-
ber of suites considered. This never occurred. The data
show that we can gain a significant improvement at rela-
tively small multipliers without any downside for nearly all
criteria considered.

An important aspect of this result is that the technique
works for both black-box and white-box adequacy criteria. If
a developer prefers not to use the simulation code as a basis
for defining adequacy, then they can still use it to improve
the effectiveness of any other test suites with which they are
working.

Experiment 3
Next we validate our ability to use fault-based analysis of
simulation code to determine the relative effectiveness of
candidate adequacy criteria. During our preparation phase,
we created 200 adequate suites for each criterion and com-
puted their effectiveness values. For this experiment, we
compute mutant scores of the same suites, and then per-
form hypothesis testing on each pair of criteria to determine
rankings based on implementation effectiveness values and
mutant scores. By doing this we are able to compare the
relations predicted under the fault-based analysis with the
actual empirical relationships that emerge from running the
tests.

Figure 3 depicts all statistically significant relationships
with p-values less than 0.05. (Note that although all pair-
wise relationships are shown, the relationships are indeed
transitive.) For example, Figure 3b indicates that Pair-50
has a consistently higher effectiveness than Quartet, which
is itself higher than all-branches and all-uses, etc.

Our experiments show that virtually the same exact re-
lationships between criteria hold when using mutant scores

derived from the simulations. Since the graphs are identi-
cal, we do not report them here. Instead, Table 3 shows
the computed p-values for relationships between the criteria
applied to GBN. Each row in this table corresponds to an
edge in Figure 3a.

The hypothesized relationship between the criteria are
listed in the first column. For each relationship, the second
column reports the p-values for the mutant score (simula-
tion), while the third column reports the p-values for the
effectiveness (implementation). Notice that the correspon-
dence is virtually exact with p-values all lower than 0.02.

The results for LSR and DNS are similar, so we omit
them due to space considerations. In particular, for LSR
the fault-based analysis accurately predicts the reversal of
the relation between all-uses and all-branches.

For DNS, the fault-based analysis faithfully predicts
all the relationships found when testing implementations.
Fault-based analysis also predicts a relationship, all-uses >
all-blocks, that is not supported by the implementation ex-
periments. Therefore, a developer might incorrectly decide
to use all-uses instead of all-blocks. While statistically this
would be an incorrect choice, in real terms there is very little
difference between the two criteria. Referring to the effec-
tiveness values in Table 2(c), both all-uses and all-blocks
have an effectiveness slightly greater than 0.93.

4.3 Threats to Validity
While we feel confident that the experimental method we

used in conducting this research is sound and that the results
are valid, we highlight potential threats to our conclusions.

The chief threat to the construct validity of our approach
is in the definition of effectiveness that we adopt. We assume
that a specification-based testing technique is most effective
when it is able to identify a broad range of faulty implemen-
tations, but others might see this differently. For example,
implementation failure rates could be used to include the
relative difficulty of finding bugs in the effectiveness score.

The main internal threat is that our experiments validate
our claims because the simulation code mimics the struc-
ture of implementation code closer than it would in prac-
tice. This is not likely, considering that the simulations were
created by the first author, who had no contact with the
students or the materials they were presented with before
receiving the implementations of GBN and LSR. Similarly
for the implementation of DNS.

Finally, as the scope of our empirical study is limited to
three systems, it is difficult to argue that our results are ex-

Hypothesis m. p-value e. p-value

IP-1>all-blocks < 0.001 < 0.001
IP-1>all-branches < 0.001 < 0.001
IP-2>all-uses < 0.001 0.004
all-branches>all-blocks < 0.001 0.002
all-uses>all-blocks < 0.001 < 0.001
IP-2>all-blocks < 0.001 < 0.001
all-uses>all-branches < 0.001 < 0.001
IP-2>all-branches < 0.001 < 0.001
IP-2>IP-1 < 0.001 < 0.001
all-uses>IP-1 < 0.001 < 0.001

Table 3: GBN Criteria p-values



Criterion min M E E+

all-blocks 2 0.19 0.27
all-branches 2 0.22 0.29
all-uses – 0.34 0.34
IP-1 2 0.29 0.32
IP-2 3 0.37 0.41

(a) GBN

Criterion min M E E+

all-blocks 2 0.46 0.51
all-branches 3 0.64 0.69
all-uses 2 0.61 0.68
Quartet 3 0.84 0.87
Pair-50 3 0.89 0.92

(b) LSR

Criterion min M E E+

all-blocks 8 0.936 0.955
all-branches – 0.973 0.973
all-uses 2 0.933 0.968
Resources 4 0.642 0.69
TypicalUsage 4 0.722 0.823

(c) DNS

Table 2: Results for Experiment 2
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Figure 3: Criteria Relationships

ternally valid. However, we view this work as a necessary
first step in establishing the utility of simulation-based test-
ing for distributed systems, and make no claims about its
broad applicability. More work is required to understand
the conditions under which our techniques are applicable
and effective, but it seems clear that it is both applicable
and effective on the systems described here.

5. RELATED WORK
We now discuss related research efforts. We summarize

existing specification-based testing techniques, with an em-
phasis on those that are applicable to distributed systems.
We then discuss existing fault-based techniques.

5.1 Specification-Based Testing
The work of Richardson, O’Malley, and Tittle [26] is gen-

erally accepted as the beginning of research into formal
specification-based testing techniques. Earlier, interface-
based techniques, such as random testing and the category-
partition method [23], are also based on specifications,
though not necessarily formal ones. In general, the appeal of
specification-based testing is that tests can be constructed to
check that an implementation does what it is required to do,
rather than what developers want it to do. However, these
techniques are viewed as complementing implementation-
based techniques, not replacing them.

There have been a number of studies of general-purpose
specification-based testing techniques. Chang and Richard-
son [6] propose a function-level, assertion-based language to
guide testing. Offutt and Liu [21] describe the generation
of test data from a higher-level, object-oriented specifica-

tion notation. Offutt et al. [22] describe the use of generic
state-based specifications (e.g., UML and statecharts) for
system-level testing. Harder et al. [14] describe the opera-
tional difference technique, which uses dynamically gener-
ated abstractions of program properties to aid in test selec-
tion. While these general-purpose techniques certainly can
be applied to low-level testing of distributed systems, our
focus is on system-level testing. Thus, we concentrate on
higher-level specifications used in the areas of communica-
tion protocols and software architecture.

In protocol testing, each side of a two-party interaction is
represented by a finite state machine (FSM) specification.
Bochmann and Petrenko [3] describe algorithms that have
been developed to generate test sequences for FSM speci-
fications. These algorithms can be classified by the guar-
antees they provide with respect to different fault models
(effectiveness), and by the length of sequences they create
(cost). Fault models differ in the set of mutation opera-
tors they allow (e.g., output faults only) and in assumptions
they make about implementation errors (e.g., by bounding
the number of states that are possible in an implementa-
tion). Once abstract test sequences have been chosen using
these algorithms, the test suite is adapted for a particular
implementation and executed to demonstrate conformance.

The chief problem with these techniques is the limited ex-
pressivity of the FSM formalism. Extended FSMs, which
are FSMs with minor state variables used in guard condi-
tions and updated during state transitions, are used to rep-
resent protocol behavior more accurately, but as pointed out
by Bochmann and Petrenko, these extensions are not han-
dled by basic FSM techniques. The greater expressiveness of
discrete-event simulations compared to FSM models could



be what attracts practitioners to simulations.
Software architectures have been studied as a means to

describe and understand large, complex systems [24]. A
number of researchers have studied the use of software ar-
chitectures for testing. Richardson and Wolf [28] propose
several architecture-based adequacy criteria based on the
Chemical Abstract Machine model. Rice and Seidman [25]
describe the ASDL architecture language and its toolset, and
discuss its use in guiding integration testing. Jin and Of-
futt [15] define five general architecture-based testing crite-
ria and applied them to the Wright ADL. Muccini et al. [19]
describe a comprehensive study of software architectures for
implementation testing. Their technique relies on Labeled
Transition System (LTS) specifications of dynamic behav-
ior. They propose a method of abstracting simpler, abstract
LTSs (ALTSs) from the monolithic global LTS in order to
focus attention on interactions that are particularly relevant
to testing. Coverage criteria are then defined with respect to
these ALTSs, and architectural tests are created to satisfy
them. Finally, architectural tests are refined into implemen-
tation tests and executed against the implementation.

The main difference between our work and the approaches
above is the nature of the specifications. Simulations are
encoded in languages more expressive than FSMs, allowing
more details of the system to be included in the analysis.
Conversely, simulations operate at a lower level of abstrac-
tion than software architecture descriptions and use an im-
perative style to express functional behavior. Finally, and
most importantly for distributed systems, simulations deal
with such things as time and network behavior explicitly.

5.2 Fault-Based Testing
In fault-based testing, models of likely or potential faults

are used to guide the testing process. The best-known fault-
based testing technique is probably mutation testing [8].
In mutation testing, the developer applies mutation oper-
ators [20] to the source code to systematically create a set
of programs that are different from the original version by a
few statements. A mutation-adequate test suite is one that
is able to “kill” all of the non-equivalent mutants.

Mutation testing is based on two complementary theo-
ries [8]. The competent programmer hypothesis states that
an incorrect program will differ by only a few statements
from a correct one; intuitively, this means that in realistic
situations a program is close to being correct. The coupling
effect states that tests that are effective at killing synthetic
mutants will also be effective at finding naturally occurring
faults in an implementation. In our work we use a standard
set of mutation operators for Java as implemented by the
MuJava tool [18]. However, we do not use the generated
mutants for mutation testing, but rather we use them to
measure other adequacy criteria.

Mutation testing is usually described in the context of
implementation testing, but more recently researchers have
proposed the application of mutation testing to specifica-
tions by defining mutation operators for specification for-
malisms (e.g. Estelle [30] and statecharts [10]). This work
differs from ours in that their goal is specification test-
ing, while ours is specification-based implementation testing.
The mutation operators could certainly be used to measure
the effectiveness of test suites or testing techniques, but we
know of no results in this area.

In closely related work, Ammann and Black [2] use a

specification-based mutant score to measure the effective-
ness of test suites. Their method employs a model checker
and mutations of temporal logic specifications to generate
test cases. They use this metric to compare the effective-
ness of test suites developed using different techniques. This
work differs from ours in two important ways: (1) their spec-
ification must be appropriate for model checking, namely it
must be a finite-state description and the properties to check
must be expressed in temporal logic, while our specification
is a discrete-event simulation, and (2) their focus is solely
on the comparison of candidate test suites, while ours also
includes the comparison of adequacy criteria.

Finally, fault-based testing has been studied extensively
with respect to specifications in the form of boolean expres-
sions. In this context, a number of specification-based test-
ing techniques have been experimentally evaluated [27, 34].
Recently, a fault-class hierarchy has been determined ana-
lytically and used to explain some of the earlier experimental
results [16, 32]. We are targeting a more expressive specifi-
cation method whose fault classes (mutation operators) are
not amenable to a general analytical comparison.

6. CONCLUSION
The work described here makes two main contributions to

the field of testing. First, we identify the potential for using
discrete-event simulations in the specification-based testing
of distributed systems and propose a concrete process for
doing so. Second, we leverage the executable nature of these
specifications in a novel fault-based analysis method and
identify several ways in which the method can be useful to
developers of distributed systems. Our approach is validated
by an initial empirical study of three distributed systems.

In the future we plan to continue our work with
simulation-based testing by estimating test execution time
using the virtual time derived from the simulations. This
should provide a useful measure of cost, which can be fac-
tored into the prediction of effectiveness. We also plan to
investigate ways in which the simulations can be used as
advanced oracles. Finally, we will be looking into ways in
which the fault-based analysis method can be used to deter-
mine relationships between regions of the input space and
effectiveness, leading to new kinds of adequacy criteria for
testing distributed systems.
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